
On Synchronous and Asynchronous Interaction in
Distributed Systems

Rob van Glabbeek
NICTA, Sydney, Australia

University of New South Wales, Sydney, Australia

rvg@cs.stanford.edu

Ursula Goltz Jens-Wolfhard Schicke∗

Institute for Programming and Reactive Systems
TU Braunschweig, Braunschweig, Germany

goltz@ips.cs.tu-bs.de drahflow@gmx.de

When considering distributed systems, it is a central issuehow to deal with interactions between
components. In this paper, we investigate the paradigms of synchronous and asynchronous interac-
tion in the context of distributed systems. We investigate to what extent or under which conditions
synchronous interaction is a valid concept for specification and implementation of such systems. We
choose Petri nets as our system model and consider differentnotions of distribution by associating
locations to elements of nets. First, we investigate the concept of simultaneity which is inherent
in the semantics of Petri nets when transitions have multiple input places. We assume that tokens
may only be taken instantaneously by transitions on the samelocation. We exhibit a hierarchy of
‘asynchronous’ Petri net classes by different assumptionson possible distributions. Alternatively, we
assume that the synchronisations specified in a Petri net arecrucial system properties. Hence transi-
tions and their preplaces may no longer placed on separate locations. We then answer the question
which systems may be implemented in a distributed way without restricting concurrency, assum-
ing that locations are inherently sequential. It turns out that in both settings we find semi-structural
properties of Petri nets describing exactly the problematic situations for interactions in distributed
systems.

1 Introduction

In this paper, we address interaction patterns in distributed systems. By a distributed system we under-
stand here a system which is executed on spatially distributed locations, which do not share a common
clock (for performance reasons for example). We want to investigate to what extent or under which con-
ditions synchronous interaction is a valid concept for specification and implementation of such systems.
It is for example a well-known fact that synchronous communication can be simulated by asynchronous
communication using suitable protocols. However, the question is whether and under which circum-
stances these protocols fully retain the original behaviour of a system. What we are interested in here are
precise descriptions of what behaviours can possibly be preserved and which cannot.

The topic considered here is by no means a new one. We give a short overview on related approaches in
the following.

Already in the 80th, Luc Bougé considered a similar problemin the context of distributed algorithms.
In [5] he considers the problem of implementing symmetric leader election in the sublanguages of CSP
obtained by allowing different forms of communication, combining input and output guards in guarded

∗This paper was partially written during a four month stay of J.-W. Schicke at NICTA, during which he was supported by
DAAD (Deutscher Akademischer Austauschdienst) and NICTA.

2 On Synchronous and Asynchronous Interaction in Distributed Systems

choice in different ways. He finds that the possibility of implementing leader election depends heavily
on the structure of the communication graphs. Truly symmetric schemes are only possible in CSP with
arbitrary input and output guards in choices.

Synchronous interaction is a basic concept in many languages for system specification and design, e.g.
in statechart-based approaches, in process algebras or theπ-calculus. For process algebras and theπ-
calculus, language hierarchies have been established which exhibit the expressive power of different
forms of synchronous and asynchronous interaction. In [4] Frank de Boer and Catuscia Palamidessi
consider various dialects of CSP with differing degrees of asynchrony. Similar work is done for theπ-
calculus in [15] by Catuscia Palamidessi, in [13] by Uwe Nestmann and in [8] by Dianele Gorla. A rich
hierarchy of asynchronousπ-calculi has been mapped out in these papers. Again mixed-choice, i.e. the
ability to combine input and output guards in a single choice, plays a central rôle in the implementation
of truly synchronous behaviour.

In [17], Peter Selinger considers labelled transition systems whose visible actions are partitioned into
input and output actions. He defines asynchronous implementations of such a system by composing it
with in- and output queues, and then characterises the systems that are behaviourally equivalent to their
asynchronous implementations. The main difference with our approach is that we focus on asynchrony
within a system, whereas Selinger focusses on the asynchronous nature of the communications of a
system with the outside world.

Also in hardware design it is an intriguing quest to use interaction mechanisms which do not rely on a
global clock, in order to gain performance. Here the simulation of synchrony by asynchrony can be a
crucial issue, see for instance [10] and [11].

In contrast to the approaches based on language constructs like the work on CSP or theπ-calculus, we
choose here a very basic system model for our investigations, namely Petri nets. The main reason for this
choice is the detailed way in which a Petri net represents a concurrent system, including the interaction
between the components it may consist of. In an interleavingbased model of concurrency such as
labelled transition systems modulo bisimulation semantics, a system representation as such cannot be
said to contain synchronous or asynchronous interaction; at best these are properties of composition
operators, or communication primitives, defined in terms ofsuch a model. A Petri net on the other
hand displays enough detail of a concurrent system to make the presence of synchronous communication
discernible. This makes it possible to study synchronous and asynchronous interaction without digressing
to the realm of composition operators.

Also in Petri net theory, the topic which concerns us here hasalready been tackled. It has been inves-
tigated in [9] and [18] whether and how a Petri net can be implemented in a distributed way. We will
comment on these and other related papers in the area of Petrinet theory in the conclusion.

In a Petri net, a transition interacts with its preplaces by consuming tokens. In Petri net semantics, taking
a token is usually considered as an instantaneous action, hence a synchronous interaction between a
transition and its preplace. In particular when a transition has several preplaces this becomes a crucial
issue. In this paper we investigate what happens if we consider a Petri net as a specification of a system
that is to be implemented in a distributed way. For this we introduce locations on which all elements of
a Petri net have to be placed upon. The basic assumption is that interaction between remote components
takes time. In our framework this means that the removal of a token will be considered instantaneous
only if the removing transition and the place where the tokenis removed from are co-located. Our
investigations are now twofold.

In Section 3 of this paper, we consider under which circumstances the synchronous interaction between
a transition and its preplace may be mimicked asynchronously, thus allowing to put places and their

van Glabbeek, Goltz and Schicke 3

posttransitions on different locations. Following [6], wemodel the asynchronous interaction between
transitions and their preplaces by inserting silent (unobservable) transitions between them. We investi-
gate the effect of this transformation by comparing the behaviours of nets before and after insertion of
the silent transitions using a suitable equivalence notion. We believe that most of our results are inde-
pendent of the precise choice of this equivalence. However,as explained in Section 5, it has to preserve
causality, branching time and divergence to some small extent, and needs to abstract from silent transi-
tions. Therefore we choose one such equivalence, based on its technical convenience in establishing our
results. Our choice isstep readiness equivalence. It is a variant of thereadiness equivalenceof [14],
obtained by collecting the set ofstepsof multiple actions possible after a certain sequence of actions,
instead of just the set of possible actions. We call a netasynchronousif, for a suitable placement of
its places and transitions, the above-mentioned transformation replacing synchronous by asynchronous
interaction preserves step readiness equivalence. Depending on the allowed placements, we obtain a hi-
erarchy of classes of asynchronous nets:fully asynchronousnets,symmetrically asynchronousnets and
asymmetrically asynchronousnets. We give semi-structural properties that characterise precisely when
a net falls into one of these classes. This puts the results from [6] in a uniform framework and extends
them by introducing a simpler notion of asymmetric asynchrony.

In Sections 4 and 5 we pursue an alternative approach. We assume that the synchronisations specified in
a Petri net are crucial system properties. Hence we enforce co-locality between a transition and all its
preplaces while at the same time assuming that concurrent activity is not possible at a single location. We
call nets fulfilling these requirementdistributedand investigate which behaviours can be implemented
by distributed nets. Again we compare the behaviours up to step readiness equivalence. We call a net
distributableiff its behaviour can be equivalently produced by a distributed net. We give a behavioural
and a semi-structural characterisation of a class of non-distributable nets, thereby exhibiting behaviours
which cannot be implemented in a distributed way at all. Finally, we give a lower bound of distributability
by providing a concrete distributed implementation for a wide range of nets.

An extended abstract of this paper will appear in the proceedings of the 33rd International Symposium
on Mathematical Foundations of Computer Science(MFCS 2008), Toruń, Poland, August 2008 (E.
Ochmański & J. Tyszkiewicz, eds.), LNCS 5162, Springer, 2008, pp. 16-35.

2 Basic Notions

We consider here 1-safe net systems, i.e. places never carrymore than one token, but a transition can fire
even if pre- and postset intersect.

Definition 1 Let Act be a set ofvisible actionsandτ 6∈ Act be aninvisible action.
A labelled net(over Act) is a tupleN = (S, T, F,M0, ℓ) where
− S is a set (ofplaces),
− T is a set (oftransitions),
− F ⊆ S × T ∪ T × S (theflow relation),
− M0 ⊆ S (the initial marking) and
− ℓ : T → Act

.
∪ {τ} (the labelling function).

Petri nets are depicted by drawing the places as circles, thetransitions as boxes containing the respective
label, and the flow relation as arrows (arcs) between them. When a Petri net represents a concurrent
system, a global state of such a system is given as amarking, a set of places, the initial state beingM0.
A marking is depicted by placing a dot (token) in each of its places. The dynamic behaviour of the

4 On Synchronous and Asynchronous Interaction in Distributed Systems

represented system is defined by describing the possible moves between markings. A markingM may
evolve into a markingM ′ when a nonempty set of transitionsG fires. In that case, for each arc(s, t) ∈ F
leading to a transitiont in G, a token moves along that arc froms to t. Naturally, this can happen only if
all these tokens are available inM in the first place. These tokens are consumed by the firing, butalso
new tokens are created, namely one for every outgoing arc of atransition inG. These end up in the places
at the end of those arcs. A problem occurs when as a result of firing G multiple tokens end up in the same
place. In that caseM ′ would not be a marking as defined above. In this paper we restrict attention to
nets in which this never happens. Such nets are called1-safe. Unfortunately, in order to formally define
this class of nets, we first need to correctly define the firing rule without assuming 1-safety. Below we do
this by forbidding the firing of sets of transitions when thismight put multiple tokens in the same place.

Definition 2 Let N = (S, T, F,M0, ℓ) be a labelled net. LetM1,M2 ⊆ S.
We denote the preset and postset of a net elementx ∈ S ∪ T by •x := {y | (y, x) ∈ F} and
x• := {y | (x, y) ∈ F} respectively. These functions are extended to sets in the usual manner, i.e.
•X := {y | y ∈ •x, x ∈ X}.

A nonempty set of transitions∅ 6= G ⊆ T , is called astep fromM1 to M2, notationM1 [G〉N M2, if
− all transitions contained inG areenabled, that is

∀t ∈ G. •t ⊆ M1 ∧ (M1 \
•t) ∩ t• = ∅ ,

− all transitions ofG areindependent, that isnot conflicting:

∀t, u ∈ G, t 6= u. •t ∩ •u = ∅ ∧ t• ∩ u• = ∅ ,

− in M2 all tokens have been removed from thepreplacesof G and new tokens have been inserted
at thepostplacesof G:

M2 = (M1 \
•G) ∪ G• .

To simplify statements about possible behaviours of nets, we use some abbreviations.

Definition 3 Let N = (S, T, F,M0, ℓ) be a labelled net.
We extend the labelling functionℓ to (multi)sets elementwise.

−→N ⊆ P(S) × INAct × P(S) is given byM1
A

−→N M2 ⇔ ∃G ⊆ T. M1 [G〉N M2 ∧ A = ℓ(G)
τ

−→N ⊆ P(S) × P(S) is defined byM1
τ

−→N M2 ⇔ ∃t ∈ T. ℓ(t) = τ ∧ M1 [{t}〉N M2

=⇒N ⊆ P(S) × Act∗ × P(S) is defined byM1
a1a2···an======⇒N M2 ⇔

M1
τ

−→
∗

N

{a1}
−→N

τ
−→

∗

N

{a2}
−→N

τ
−→

∗

N · · ·
τ

−→
∗

N

{an}
−→N

τ
−→

∗

N M2

where
τ

−→
∗

N denotes the reflexive and transitive closure of
τ

−→N .

We writeM1
A

−→N for ∃M2. M1
A

−→N M2, M1 X
A

−→N for ∄M2. M1
A

−→N M2 and similar for the
other two relations. LikewiseM1[G〉N abbreviates∃M2. M1[G〉NM2.

A markingM1 is said to bereachableiff there is aσ ∈ Act∗ such thatM0
σ

=⇒N M1. The set of all
reachable markings is denoted by[M0〉N .

We omit the subscriptN if clear from context.

As said before, here we only want to consider 1-safe nets. Formally, we restrict ourselves tocontact-free
nets, where in every reachable markingM1 ∈ [M0〉 for all t ∈ T with •t ⊆ M1

(M1 \
•t) ∩ t• = ∅ .

van Glabbeek, Goltz and Schicke 5

For such nets, in Definition 2 we can just as well consider a transition t to be enabled inM iff •t ⊆ M ,
and two transitions to be independent when•t ∩ •u = ∅.

In this paper we furthermore restrict attention to nets for which •t 6= ∅ and•t andt• are finite for all
t ∈ T ands• is finite for all s ∈ S. We also require the initial markingM0 to be finite. A consequence
of these restrictions is that all reachable markings are finite, and it can never happen that infinitely many
independent transitions are enabled. Henceforth, withnet we mean a labelled net obeying the above
restrictions.

In our nets transitions are labelled withactionsdrawn from a set Act
.
∪ {τ}. This makes it possible to

see these nets as models ofreactive systems, that interact with their environment. A transitiont can be
thought of as the occurrence of the actionℓ(t). If ℓ(t) ∈ Act, this occurrence can be observed and influ-
enced by the environment, but ifℓ(t)= τ , t is aninternal or silent transition whose occurrence cannot be
observed or influenced by the environment. Two transitions whose occurrences cannot be distinguished
by the environment are equipped with the same label. In particular, given that the environment cannot
observe the occurrence of internal transitions at all, all of them have the same label, namelyτ .

We use the termplain netsfor nets whereℓ is injective and no transition has the labelτ , i.e. essentially
unlabelled nets. Similarly, we speak ofplain τ -netsto describe nets whereℓ(t) = ℓ(u) 6= τ ⇒ t = u,
i.e. nets where every observable action is produced by a unique transition. In this paper we focus on
plain nets, and give semi-structural characterisations ofclasses of plain nets only. However, in defining
whether a net belongs to one of those classes, we study its implementations, which typically are plain
τ -nets. When proving our impossibility result (Theorem 3 in Section 5) we even allow arbitrary nets as
implementations.

We use the following variation of readiness semantics [14] to compare the behaviour of nets.

Definition 4 Let N = (S, T, F,M0, ℓ) be a net,σ ∈ Act∗ andX ⊆ INAct.
<σ,X> is astep ready pairof N iff

∃M. M0
σ

=⇒ M ∧ M X
τ

−→ ∧X = {A ∈ INAct | M
A

−→}.

We writeR(N) for the set of all step ready pairs ofN .
Two netsN andN ′ arestep readiness equivalent, N ≈R N ′, iff R(N) = R(N ′).

The elements of a setX as above are multisets of actions, but as in all such multisets that will be
mentioned in this paper the multiplicity of each action occurrence is at most 1, we use set notation to
denote them.

3 Asynchronous Petri Net Classes

In Petri nets, an inherent concept of simultaneity is built in, since when a transition has more than one
preplace, it can be crucial that tokens are removed instantaneously. When using a Petri net to model a
system which is intended to be implemented in a distributed way, this built-in concept of synchronous
interaction may be problematic.

In this paper, a given net is regarded as aspecificationof how a system should behave, and this specifi-
cation involves complete synchronisation of the firing of a transition and the removal of all tokens from
its preplaces. In this section, we propose various definitions of anasynchronous implementationof a net
N , in which such synchronous interaction is wholly or partially ruled out and replaced by asynchronous

6 On Synchronous and Asynchronous Interaction in Distributed Systems

interaction. The question to be clarified is whether such an asynchronous implementation faithfully mim-
ics the dynamic behaviour ofN . If this is the case, we call the netN asynchronouswith respect to the
chosen interaction pattern.

The above programme, and thus the resulting concept of asynchrony, is parametrised by the answers to
three questions:

1. Which synchronous interactions do we want to rule out exactly?
2. How do we replace synchronous by asynchronous interaction?
3. When does one net faithfully mimic the dynamic behaviour of another?

To answer the first question we associate alocationto each place and each transition in a net. A transition
may take a token instantaneously from a preplace (when firing) iff this preplace is co-located with the
transition; if the preplace resides on a different locationthan the transition, we have to assume the
collection of the token takes time, and thus the place loosesits tokenbeforethe transition fires.

We model the association of locations to the places and transitions in a netN = (S, T, F,M0, ℓ) as
a functionD : S ∪ T → Loc, with Loc a set of possible locations. We refer to such a function as
a distribution of N . Since the identity of the locations is irrelevant for our purposes, we can just as
well abstract from Loc and representD by the equivalence relation≡D on S ∪ T given byx ≡D y iff
D(x) = D(y).

In this paper we do not deal with nets that have a distributionbuilt in. We characterise the interaction
patterns we are interested in by imposing particular restrictions on the allowed distributions. The im-
plementor of a net can choose any distribution that satisfiesthe chosen requirements, and we call a net
asynchronous for a certain interaction pattern if it has a correct asynchronous implementation based on
any distribution satisfying the respective requirements.

The fully asynchronousinteraction pattern is obtained by requiring that all places and all transitions
reside on different locations. This makes it necessary to implement the removal of every token in a time-
consuming way. However, this leads to a rather small class ofasynchronous nets, that falls short for many
applications. We therefore propose two ways to loosen this requirement, thereby building a hierarchy of
classes of asynchronous nets. Both require that all places reside on different locations, but a transition
may be co-located with one of its preplaces. Thesymmetrically asynchronousinteraction pattern allows
this only for transitions with a single preplace, whereas intheasymmetrically asynchronousinteraction
pattern any transition may be co-located with one of its preplaces. Since two preplaces can never be
co-located, this breaks the symmetry between the preplacesof a transition; an implementor of a net has
to choose at most one preplace for every transition, and co-locate the transition with it. The removal of
tokens from all other preplaces needs to be implemented in a time-consuming way. Note that all three
interaction patterns break the synchronisation of the token removal between the various preplaces.

Definition 5 Let D be a distribution on a netN = (S, T, F,M0, ℓ),
and let≡D be the induced equivalence relation onS ∪ T . We say thatD is
− fully distributed, D ∈ QFD, whenx ≡D y for x, y ∈ S ∪ T only if x = y,
− symmetrically distributed, D ∈ QSD, when

p ≡D q for p, q ∈ S only if p = q,
t ≡D p for t ∈ T, p ∈ S only if •t = {p} and
t ≡D u for t, u ∈ T only if t = u or ∃p ∈ S. t ≡D p ≡D u,

− asymmetrically distributed, D ∈ QAD , when
p ≡D q for p, q ∈ S only if p = q,
t ≡D p for t ∈ T, p ∈ S only if p ∈ •t and
t ≡D u for t, u ∈ T only if t = u or ∃p ∈ S. t ≡D p ≡D u.

van Glabbeek, Goltz and Schicke 7

N

p q

a t b u

QFD

p

τ

q

ττ

a t b u

QSD

p q

ττ

a t b u

QAD

p q

τ

a t b u

Figure 1: Possible results forID(N) given different requirements

The second question raised above was: How do we replace synchronous by asynchronous interaction?
In this section we assume that if an arc goes from a places to a transitiont at a different location, a token
takes time to move froms to t. Formally, we describe this by inserting silent (unobservable) transitions
between transitions and their remote preplaces. This leadsto the following notion of an asynchronous
implementation of a net with respect to a chosen distribution.

Definition 6 Let N = (S, T, F,M0, ℓ) be a net, and let≡D be an equivalence relation onS ∪ T .
TheD-based asynchronous implementationof N is ID(N) := (S ∪ Sτ , T ∪ T τ , F ′,M0, ℓ

′) with

Sτ := {st | t ∈ T, s ∈ •t, s 6≡D t} ,

T τ := {ts | t ∈ T, s ∈ •t, s 6≡D t} ,

F ′ := {(t, s) | t ∈ T, s ∈ t•} ∪ {(s, t) | t ∈ T, s ∈ •t, s ≡D t}
∪ {(s, ts), (ts, st), (st, t) | t ∈ T, s ∈ •t, s 6≡D t} ,

ℓ′ ↾ T = ℓ and ℓ′(ts) = τ for ts ∈ T τ .

Proposition 1 For any (contact-free) netN , and any choice of≡D, the netID(N) is contact-free, and
satisfies the other requirements imposed on nets, listed in Section 2.

Proof In Appendix A. �

The above protocol for replacing synchronous by asynchronous interaction appears to be one of the
simplest ones imaginable. More intricate protocols, involving many asynchronous messages between
a transition and its preplaces, could be contemplated, but we will not study them here. Our protocol
involves just one such message, namely from the preplace to its posttransition. It is illustrated in Figure 1.

The last question above was: When does one net faithfully mimic the dynamic behaviour of another?
This asks for asemantic equivalenceon Petri nets, telling when two nets display the same behaviour.
Many such equivalences have been studied in the literature.We believe that most of our results are inde-
pendent of the precise choice of a semantic equivalence, as long as it preserves causality and branching
time to some degree, and abstracts from silent transitions.Therefore we choose one such equivalence,
based on its technical convenience in establishing our results, and postpone questions on the effect of
varying this equivalence for further research. Our choice is step readiness equivalence, as defined in
Section 2. Using this equivalence, we define a notion ofbehavioural asynchronyby asking whether the
asynchronous implementation of a net preserves its behaviour. This notion is parametrised by the chosen
interaction pattern, characterised as a requirement on theallowed distributions.

Definition 7 Let Q be a requirement on distributions of nets.
A plain netN is behaviourallyQ-asynchronousiff there exists a distributionD of N meeting the
requirementQ such thatID(N) ≈R N .

8 On Synchronous and Asynchronous Interaction in Distributed Systems

Intuitively, the only behavioural difference between a netN and its asynchronous implementationID(N)
can occur when inN a places ∈ •u is marked, whereas inID(N) this token is already on its way from
s to its posttransitionu. In that case, it may occur that a transitiont 6= u with s ∈ •t is enabled inN ,
whereast is not enabled in the described state ofID(N). We call the situation inN leading to this state
of ID(N) a distributed conflict; it is in fact the only circumstance in whichID(N) fails to faithfully
mimic the dynamic behaviour ofN .

Definition 8 Let N = (S, T, F,M0, ℓ) be a net andD a distribution ofN .
N has adistributed conflict with respect toD iff

∃t, u ∈ T ∃p ∈ •t ∩ •u. t 6= u ∧ p 6≡D u ∧ ∃M ∈ [M0〉N . •t ⊆ M .

We wish to call a netN (semi)structurally asynchronousiff the situation outlined above never occurs,
so that the asynchronous implementation does not change thebehaviour of the net. As for behavioural
asynchrony, this notion of asynchrony is parametrised by the set of allowed distributions.

Definition 9 Let Q be a requirement on distributions of nets.
A net N is (semi)structurallyQ-asynchronousiff there exists a distributionD of N meeting the
requirementQ such thatN has no distributed conflicts with respect toD.

The following theorem shows that distributed conflicts describe exactly the critical situations: For all
plain nets the notions of structural and behavioural asynchrony coincide, regardless of the choice ifQ.

Theorem 1 Let N be a plain net, andQ a requirement on distributions of nets.
ThenN is behaviourallyQ-asynchronous iff it is structurallyQ-asynchronous.

Proof In Appendix A. �

Because of this theorem, we call a plain netQ-asynchronous if it is behaviourally and/or structurally
Q-asynchronous. In this paper we study this concept for plainnets only. When takingQ = QFD we
speak offully asynchronous nets, when takingQ = QSD of symmetrically asynchronous nets, and when
takingQ = QAD of asymmetrically asynchronous nets.

Example 1 The netN of Figure 1 is not fully asynchronous, for its uniqueD-based asynchronous
implementationID(N) with D ∈ QFD (also displayed in Figure 1) is not step readiness equivalent to
N . In fact 〈ε, ∅〉 ∈ R(ID(N)) \R(N). This inequivalence arises because inID(N) the option to do an
a-action can be disabled already before any visible action takes place; this is not possible inN .

The only way to avoid a distributed conflict in this net is by taking t ≡D p ≡D u. This is not allowed
for anyD ∈ QFD or D ∈ QSD, but it is allowed forD ∈ QAD (cf. the last net in Figure 1). HenceN is
asymmetrically asynchronous, but not symmetrically asynchronous.

SinceQFD ⊆ QSD ⊆ QAD , any fully asynchronous net is symmetrically asynchronous, and any symmet-
rically asynchronous net is also asymmetrically asynchronous. Below we give semi-structural character-
isations of these three classes of nets. The first two stem from [6], where the class of fully asynchronous
nets is calledFA(B) and the class of symmetrically asynchronous nets is calledSA(B). The classAA(B)
in [6] is somewhat larger than our class of asymmetrically asynchronous nets, for it is based on a slightly
more involved protocol for replacing synchronous by asynchronous interaction.

van Glabbeek, Goltz and Schicke 9

Definition 10 A plain netN = (S, T, F,M0, ℓ) has a
− partially reachable conflictiff

∃t, u ∈ T ∃p ∈ •t ∩ •u. t 6= u ∧ ∃M ∈ [M0〉N . •t ⊆ M ,

− partially reachableN iff

∃t, u ∈ T ∃p ∈ •t ∩ •u. t 6= u ∧ |•u| > 1 ∧ ∃M ∈ [M0〉N . •t ⊆ M ,

− left and right border reachableM iff

∃t, u, v ∈ T ∃p ∈ •t ∩ •u ∃q ∈ •u ∩ •v.
t 6= u ∧ u 6= v ∧ p 6= q ∧
∃M1,M2 ∈ [M0〉N . •t ⊆ M1 ∧

•v ⊆ M2 .

Theorem 2 Let N be a plain net.
− N is fully asynchronous iff it has no partially reachable conflict.
− N is symmetrically asynchronous iff it has no partially reachableN.
− N is asymmetrically asynchronous iff it has no left and right border reachableM.

Proof Straightforward with Theorem 1. �

In the theory of Petri nets, there have been extensive studies on classes of nets with certain structural
properties likefree choice nets[3, 2] andsimple nets[3], as well as extensions of theses classes. They
are closely related to the net classes defined here, but they are defined without taking reachability into
account. For a comprehensive overview and discussion of therelations between those purely structurally
defined net classes and our net classes see [6]. Restricted toplain nets without dead transitions (mean-
ing that every transitiont satisfies the requirement∃M ∈ [M0〉.

•t ⊆ M), Theorem 2 says that a net
is fully synchronous iff it is conflict-free in the structural sense (no shared preplaces), symmetrically
asynchronous iff it is a free choice net and asymmetrically asynchronous iff it is simple.

Our asynchronous net classes are defined for plain nets only.There are two approaches to lifting them
to labelled nets. One is to postulate that whether a net is asynchronous or not has nothing to do with
its labelling function, so that after replacing this labelling by the identity function one can apply the
insights above. This way our structural characterisations(Theorems 1 and 2) apply to labelled nets as
well. Another approach would be to apply the notion of behavioural asynchrony of Definition 7 directly
to labelled nets. This way more nets will be asynchronous, because in some cases a net happens to
be equivalent to its asynchronous implementation in spite of a failure of structural asynchrony. This
happens for instance if all transitions in the original net are labelledτ . Unlike the situation for plain nets,
the resulting notion of behavioural asynchrony will most likely be strongly dependent on the choice of
the semantic equivalence relation between nets.

4 Distributed Systems

The approach of Section 3 makes a difference between a net regarded as a specification, and an asyn-
chronous implementation of the same net. The latter could bethought of as a way to execute the net
when a given distribution makes the synchronisations that are inherent in the specification impossible.
In this and the following section, on the other hand, we drop the difference between a net and its asyn-
chronous implementation. Instead of adapting our intuition about the firing rule when implementing a

10 On Synchronous and Asynchronous Interaction in Distributed Systems

net in a distributed way, we insist that all synchronisations specified in the original net remain present
as synchronisations in a distributed implementation. Yet,at the same time we stick to the point of view
that it is simply not possible for a transition to synchronise its firing with the removal of tokens from
preplaces at remote locations. Thus we only allow distributions in which each transition is co-located
with all of its preplaces. We call such distributionseffectual. For effectual distributionsD, the imple-
mentation transformationID is the identity. As a consequence, if effectuality is part ofa requirement
Q imposed on distributions, the question whether a net isQ-asynchronous is no longer dependent on
whether an asynchronous implementation mimics the behaviour of the given net, but rather on whether
the net allows a distribution satisfyingQ at all.

The requirement of effectuality does not combine well will the requirements on distributions proposed
in Definition 5. For ifQ is the class of distributions that are effectual and asymmetrically distributed,
then only nets without transitions with multiple preplaceswould beQ-asynchronous. This rules out
most useful applications of Petri nets. The requirement of effectuality by itself, on the other hand, would
make every net asynchronous, because we could assign the same location to all places and transitions.

We impose one more fundamental restriction on distributions, namely that when two visible transitions
can occur in one step, they cannot be co-located. This is based on the assumption that at a given location
visible actions can only occur sequentially, whereas we want to preserve as much concurrency as pos-
sible (in order not to loose performance). Recall that in Petri nets simultaneity of transitions cannot be
enforced: if two transitions can fire in one step, they can also fire in any order. The standard interpre-
tation of nets postulates that in such a case those transitions are causally independent, and this idea fits
well with the idea that they reside at different locations.

Definition 11 Let N = (S, T, F,M0, ℓ) be a net.
Theconcurrency relation⌣ ⊆ T 2 is given byt ⌣ u ⇔ t 6= u ∧ ∃M ∈ [M0〉. M [{t, u}〉.

N is distributediff it has a distributionD such that
− ∀s ∈ S, t ∈ T. s ∈ •t ⇒ t ≡D s,
− t ⌣ u ∧ l(t), l(u) 6= τ ⇒ t 6≡D u.

It is straightforward to give a semi-structural characterisation of this class of nets:

Observation 1 A net is distributed iff there is no sequencet0, . . . , tn of transitions witht0 ⌣ tn and
•ti−1 ∩

•ti 6= ∅ for i = 1, . . . , n.

A structure as in the above characterisation of distributednets can be considered as a prolongedM
containing two independent transitions that can be simultaneously enabled.

It is not hard to find a plain net that is fully asynchronous, yet not distributed. However, restricted to
plain nets without dead transitions, the class of asymmetrically asynchronous nets is a strict subclass of
the class of distributed nets. Namely, if a net isM-free (where anM is as in Definition 10, but without
the reachability condition on the bottom line), then it surely has no sequence as described above.

5 Distributable Systems

In this section, we will investigate the borderline for distributability of systems. It is a well known
fact that sometimes a global protocol is necessary when concurrent activities in a system interfere. In
particular, this may be necessary for deciding choices in a coherent way. Consider for example the

van Glabbeek, Goltz and Schicke 11

p q

a t b u c v

Figure 2: A fully markedM.

simple net in Figure 2. It contains anM-structure, which was already exhibited as a problematic one in
Section 3. Transitionst andv are supposed to be concurrently executable (if we do not wantto restrict
performance of the system), and hence reside on different locations. Thus at least one of them, sayt,
cannot be co-located with transitionu. However, both transitions are in conflict withu.

As we use nets as models of reactive systems, we allow the environment of a net to influence decisions
at runtime by blocking one of the possibilities. Equivalently we can say it is the environment that fires
transitions, and this can only happen for transitions that are currently enabled in the net. If the net decides
betweent andu before the actual execution of the chosen transition, the environment might change its
mind in between, leading to a state of deadlock. Therefore wework in a branching time semantics, in
which the option to performt stays open until eithert or u occurs. Hence the decision to fireu can
only be taken at the location ofu, namely by firingu, and similarly fort. Assuming that it takes time to
propagate any message from one location to another, in no distributed implementation of this net cant
andu be simultaneously enabled, because in that case we cannot exclude that both of them happen. Thus,
the only possible implementation of the choice betweent andu is to alternate the right to fire between
t andu, by sending messages between them (cf. Figure 3). But if the environment only sporadically
tries to firet or u it may repeatedly miss the opportunity to do so, leading to aninfinite loop of control
messages sent back and forth, without either transition ever firing.

In this section we will formalise this reasoning, and show that under a few mild assumptions this type
of structures cannot be implemented in a distributed mannerat all, i.e. even when we allow the imple-
mentation to be completely unrelated to the specification, except for its behaviour. For this, we apply the
notion of a distributed net, as introduced in the previous section. Furthermore, we need an equivalence
notion in order to specify in which way an implementation as adistributed net is required to preserve the
behaviour of the original net. As in Section 3, we choose stepreadiness equivalence. We call a plain net
distributableif it is step readiness equivalent to a distributed net. We speak of atruly synchronousnet if
it is not distributable, thus if it may not be transformed into any distributed net with the same behaviour
up to step readiness equivalence, that is if no such net exists. We study the concept “distributable” for
plain nets only, but in order to get the largest class possible we allow non-plain implementations, where
a given transition may be split into multiple transitions carrying the same label.

Definition 12 A plain netN is truly synchronousiff there exists no distributed netN ′ which is step
readiness equivalent toN .

We will show that nets like the one of Figure 2 are truly synchronous.

Step readiness equivalence is one of the simplest and least discriminating equivalences imaginable that
preserves branching time, causality and divergence to somesmall extend. Our impossibility result, for-
malised below as Theorem 3, depends crucially on all three properties, and thus needs to be reconsidered
when giving up on any of them. When working in linear time semantics, every net is equivalent to an
infinite net that starts with a choice between severalτ -transitions, each followed by a conflict-free net

12 On Synchronous and Asynchronous Interaction in Distributed Systems

a t b u c v

τ

τ

τ

τ

Figure 3: A busy-wait implementation of the net in Figure 2

modelling a single run. This net isN-free, and hence distributed. It can be argued that infinite implemen-
tations are not acceptable, but when searching for the theoretical limits to distributed implementability
we don’t want to rule them out dogmatically. When working in interleaving semantics, any net can be
converted into an equivalent distributed net by removing all concurrency between transitions. This can
be accomplished by adding a new, initially marked place, with an arc to and from every transition in the
net. When fully abstracting from divergence, even when respecting causality and branching time, the net
of Figure 2 is equivalent to the distributed net of Figure 3, and in fact it is not hard to see that this type
of implementation is possibly for any given net. Yet, the implementation is suspect, as the implemented
decision of a choice may fail to terminate. The clauseM X

τ
−→ in Definition 4 is strong enough to rule

out this type of implementation, even though our step readiness semantics abstracts from other forms of
divergence.

We now characterise the class of nets which we will prove to betruly synchronous.

Definition 13 Let N = (S, T, F,M0, ℓ) be a net.
N has afully reachable visible pureM iff ∃t, u, v ∈ T. •t ∩ •u 6= ∅ ∧ •u ∩ •v 6= ∅ ∧ •t ∩ •v = ∅ ∧
ℓ(t), ℓ(u), ℓ(v) 6= τ ∧ ∃M ∈ [M0〉.

•t ∪ •u ∪ •v ⊆ M .

Here apureM is anM as in Definition 10 that moreover satisfies•t ∩ •v = ∅, and hencep 6∈ •v, q 6∈ •t
andt 6= v. These requirements follow from the conditions above.

Proposition 2 A net with a fully reachable visible pureM is not distributed.

Proof Let N = (S, T, F,M0, ℓ) be a net that has a fully reachable visible pureM, so there exist
t, u, v ∈ T andp, q ∈ S such thatp ∈ •t∩•u∧q ∈ •u∩•v∧•t∩•v = ∅ and∃M ∈ [M0〉.

•t∪•u∪•v ⊆ M .
Thent ⌣ v. SupposeN is distributed by the distributionD. Thent ≡D p ≡D u ≡D q ≡D v but t ⌣ v
impliest 6≡D v. �

Now we show that fully reachable visible pureM’s that are present in a plain net are preserved under step
readiness equivalence.

Lemma 1 Let N = (S, T, F,M0, ℓ) be a plain net.
If N has a fully reachable visible pureM, there exists<σ,X> ∈ R(N) such that∃a, b, c ∈ Act.
a 6= c ∧ {b} ∈ X ∧ {a, c} ∈ X ∧ {a, b} /∈ X ∧ {b, c} /∈ X. (It is implied thata 6= b 6= c.)

Proof N has a fully reachable visible pureM, so there aret, u, v∈T andM∈[M0〉 such that•t∩•u 6= ∅
∧•u∩•v 6= ∅∧•t∩•v = ∅∧ℓ(t), ℓ(u), ℓ(v) 6= τ∧•t∪•u∪•v ⊆ M . Letσ ∈ Act∗ such thatM0

σ
=⇒ M .

SinceN is a plain net,M X
τ

−→ andℓ(t) 6= ℓ(u) 6= ℓ(v) 6= ℓ(t). Hence there exists anX ⊆ INAct such
that<σ,X>∈R(N) ∧ {ℓ(u)} ∈ X ∧ {ℓ(t), ℓ(v)} ∈ X ∧ {ℓ(t), ℓ(u)} /∈ X ∧ {ℓ(u), ℓ(v)} /∈ X. �

van Glabbeek, Goltz and Schicke 13

Lemma 2 Let N = (S, T, F,M0, ℓ) be a net.
If there exists<σ,X> ∈ R(N) such that∃a, b, c ∈ Act. a 6= c∧{b} ∈ X∧{a, c} ∈ X∧{a, b} /∈ X
∧ {b, c} /∈ X, thenN has a fully reachable visible pureM.

Proof Let M ⊆ S be the marking which gave rise to the step ready pair<σ,X>, i.e.M0
σ

=⇒ M and

M
{b}
−→ ∧M

{a,c}
−→ ∧M X

{a,b}
−→ ∧M X

{b,c}
−→.

As a 6= b 6= c 6= a there must exist three transitionst, u, v ∈ T with ℓ(t) = a ∧ ℓ(u) = b ∧ ℓ(v) = c and
M [{u}〉∧M [{t, v}〉∧¬(M [{t, u}〉)∧¬(M [{u, v}〉). FromM [{u}〉∧M [{t, v}〉 follows •t∪•u∪•v ⊆
M . FromM [{t, v}〉 follows •t∩ •v = ∅. From¬(M [{t, u}〉) then follows•t∩ •u 6= ∅ and analogously
for u andv. HenceN has a fully reachable visible pureM. �

Note that the lemmas above give a behavioural property that for plain nets is equivalent to having a fully
reachable visible pureM.

Theorem 3 A plain net with a fully reachable visible pureM is truly synchronous.

Proof Let N be a plain net which has a fully reachable visible pureM. Let N ′ be a net which is step
readiness equivalent toN . By Lemma 1 and Lemma 2, alsoN ′ has a fully reachable visible pureM. By
Proposition 2,N ′ is not distributed. ThusN is truly synchronous. �

Theorem 3 gives an upper bound of the class of distributable nets. We conjecture that this upper bound
is tight, and a plain net is distributable iff it has no fully reachable visible pureM.

Conjecture 1 A plain net is truly synchronous iff it has a fully reachable visible pureM.

In the following, we give a lower bound of distributability by providing a protocol to implement certain
kinds of plain nets distributedly. These implementations do not add additional labelled transitions, but
only provide the existing ones with a communication protocol in the form ofτ -transitions. Hence these
implementations pertain to a notion of distributability inwhich we restrict implementations to be plain
τ -nets. Note that this does not apply to the impossibility result above.

Definition 14 A plain netN is plain-distributableiff there exists a distributed plainτ -netN which is
step readiness equivalent toN .

Definition 15 Let N = (S, T, F,M0, ℓ) be a net.
We define theenabled conflict relation# ⊆ T 2 as

t # u ⇔ ∃M ∈ [M0〉. M [{t}〉 ∧ M [{u}〉 ∧ ¬(M [{t, u}〉).

We now propose the following protocol for implementing nets. An example depicting it can be found in
Figure 5. As locations we take the places in a given net, and the equivalence classes of transitions that are
related by the reflexive and transitive closure of the enabled conflict relation. We locate every transitiont
in its equivalence class, whereas every place gets a privatelocation. Every places will have an embassy
s[t] in every location[t] where one of its posttransitionst ∈ s• resides. As soon ass receives a token, it
will distribute this information to its posttransitions byplacing a token in each of these embassies. The
arc froms to t is now replaced by an arc froms[t] to t, so if t could fire in the original net it can also fire
in the implementation. So far the construction allows two transitions in different locations that shared
the preconditions to fire concurrently, although they were in conflict in the original net. However, if this

14 On Synchronous and Asynchronous Interaction in Distributed Systems

r p q

a

b

c

Figure 4: An example net

situation actually occurs, these transitions would have been in an enabled conflict, and thus assigned to
the same location. The rest of the construction is a matter ofgarbage collection. If a transitiont fires, for
each of its preplacess, all tokens that are still present in the various embassies of s in locations[u] need
to be removed from there. This is done by a special internal transitiont

[u]
s . Once all these transitions (for

the various choices ofs and[u]) have fired, an internal transitiont′ occurs, which puts tokens in all the
postplaces oft.

Definition 16 Let N = (S, T, F,M0, ℓ) be a net.
Let [t] := {u ∈ T | t #∗ u}. The transition-controlled-choice implementation ofN is defined to be
the netN ′ := (S ∪ Sτ , T ∪ T τ , F ′,M0, ℓ

′) with

Sτ := {s[t] | s ∈ S, t ∈ s•} ∪ { t | t ∈ T} ∪

{s
[u]
t , s

[u]
t | s ∈ S, t, u ∈ s•, [u] 6= [t]}

T τ := { s | s ∈ S} ∪ {t′ | t ∈ T} ∪

{t[u]
s | s ∈ S, t, u ∈ s•, [u] 6= [t]}

F ′ := {(s, s) | s ∈ S} ∪

{(s , s[t]), (s[t], t) | s ∈ S, t ∈ s•} ∪

{(t, t), (t , t′) | t ∈ T} ∪

{(t′, s) | t ∈ T, s ∈ t•} ∪

{(t, s
[u]
t), (s

[u]
t , t[u]

s), (t[u]
s , s

[u]
t), (s

[u]
t , t′), (s[u], t[u]

s) | s ∈ S, t, u ∈ s•, [u] 6= [t]}

ℓ′ ↾ T = ℓ andℓ′(T τ) = {τ}.

Theorem 4 A plain netN is plain-distributable iff#∗ ∩ ⌣ = ∅.

Proof “⇒”: When implementing a plain netN by a plainτ -net N ′ that is step readiness equivalent
to N , the# and⌣ relations between the transitions ofN also exists between the corresponding visible
transitions ofN ′. This is easiest to see when writingaN , resp.aN ′ , to denote a transition inN , resp.N ′,
with labela, which must be unique sinceN is a plain net, resp.N ′ a plainτ -net. Namely ifaN # bN ,
thenN has a step ready pair<σ,X> with {a},{b} ∈ X but {a, b} 6∈ X. This must also be a step ready
pair ofN ′, and henceaN ′ # bN ′ . Likewise,aN ⌣ bN impliesaN ′ ⌣ bN ′ .

Thus if #∗ ∩ ⌣ 6= ∅ holds inN , then the same is the case forN ′, and henceN ′ is not distributed by
Observation 1.

“⇐”: If #∗ ∩ ⌣ = ∅, N can be implemented as specified in Definition 16. In fact, the transition-
controlled-choice implementation of any netN yields a net that is step readiness equivalent toN . See
Appendix B for a formal proof of this claim. By construction,if N is plain, its transition-controlled-
choice implementation is a plainτ -net. Moreover, if#∗ ∩ ⌣ = ∅ it never happens that concurrent
visible transitions are co-located, and hence the implementation will be distributed. �

van Glabbeek, Goltz and Schicke 15

r

τ r

r[a]

a

a

τ a′

p

τ p

p[a] p[b]

q

τ q

q[b]

b

b

τ b′

c

c

τ c′

τ b
[a]
p

p
[a]
b

p[b]
a

τ a
[b]
p

p
[b]
a

p
[a]
b

Figure 5: A distributed implementation for the net in Figure4, partitioning into localities shown by
dashed lines

Our definition of distributed nets only enforces concurrentactions to be on different locations if they
are visible, and our implementation in Definition 16 produces nets which actually contain concurrent
unobservable activity at the same location. If this is undesired it can easily be amended by adding a
single marked place to every location and connecting that place to every transition on that location by a
self-loop. While this approach will introduce new causality relations, step readiness equivalence will not
detect this.

6 Conclusion

In this paper, we have characterised different grades of asynchrony in Petri nets in terms of structural
and behavioural properties of nets. Moreover, we have givenboth an upper and a lower bound of dis-
tributability of behaviours. In particular we have shown that some branching-time behaviours cannot be
exhibited by a distributed system.

We did not consider connections from transitions to their postplaces as relevant to determine asynchrony
and distributability. This is because we only discussed contact-free nets where no synchronisation by
postplaces is necessary. In the spirit of Definition 6 we could insertτ -transitions on any or all arcs from
transitions to their postplaces, and the resulting net would always be equivalent to the original.

We have already given a short overview on related work in the introduction of this paper. Most closely
related to our approach are several lines of work using Petrinets as a model of reactive systems.

16 On Synchronous and Asynchronous Interaction in Distributed Systems

a b c

⇒

a b c

Figure 6: A specification and its Hopkins-implementation which added concurrency.

As mentioned in Section 3, classes of nets with certain structural properties likefree choice nets[3, 2] and
simple nets[3], as well as extensions of theses classes, have been extensively studied in Petri net theory,
and are closely related to the classes of nets defined here. In[3], Eike Best and Mike Shields introduce
various transformations between free choice nets, simple nets and extended variants thereof. They use
“essential equivalence” to compare the behaviour of different nets, which they only give informally.
This equivalence is insensitive to divergence, which is relied upon in their transformations. It also does
not preserve concurrency, which makes it possible to implementbehavioural free choice nets, that may
feature a fully reachable visibleM, as free choice nets. They continue to show conditions underwhich
liveness can be guaranteed for many of these classes.

In [1], Wil van der Aalst, Ekkart Kindler and Jörg Desel introduce two extensions to extended simple
nets, by excluding self-loops from the requirements imposed on extended simple nets. This however
assumes a kind of “atomicity” of self-loops, which we did notallow in this paper. In particular we do not
implicitly assume that a transition will not change the state of a place it is connected to by a self-loop,
since in case of deadlock, the temporary removal of a token from such a place might not be temporary
indeed.

In [16], Wolfgang Reisig introduces a class of systems whichcommunicate using buffers and where the
relative speeds of different components are guaranteed to be irrelevant. The resulting nets are simple
nets. He then proceeds introducing a decision procedure forthe problem whether a marking exists which
makes the complete system live.

Dirk Taubner has in [18] given various protocols by which to implement arbitrary Petri nets in the OC-
CAM programming language. Although this programming language offers synchronous communication
he makes no substantial use of that feature in the protocols,thereby effectively providing an asynchronous
implementation of Petri nets. He does not indicate a specificequivalence relation, but is effectively using
linear-time equivalences to compare implementations to the specification.

The work most similar to our approach we have found is the one by Hopkins, [9]. There he already
classified nets by whether they are implementable by a net distributed among different locations. He
uses an interleaving equivalence to compare an implementation to the original net, and while allowing
a range of implementations, he does require them to inherit some of the structure of the original net.
The net classes he describes in his paper are larger than those of Section 3 because he allows more
general interaction patterns, but they are incomparable with those of Section 5. One direction of this
inequality depends on his choice of interleaving semantics, which allows the implementation in Figure 6.
The step readiness equivalence we use does not tolerate the added concurrency and the depicted net is
not distributable in our sense. The other direction of the inequality stems from the fact that we allow
implementations which do not share structure with the specification but only emulate its behaviour. That
way, the net in Figure 7 can be implemented in our approach as depicted.

Still many open questions remain. While our impossibility result holds even when allowing labelled nets
as implementations, our characterisation in Theorem 4 onlyconsiders unlabelled ones. This begs the

van Glabbeek, Goltz and Schicke 17

a b c

⇒

a b c

Figure 7: A distributable net which is not considered distributable in [9], and its implementation.

question which class of nets can be implemented using labelled nets. We conjecture that a distributed
implementation exists for every net which has no fully reachable visible pureM. We also conjecture that
if we allow linear time correct implementations, all nets become distributable, even when only allowing
finite implementations of finite nets. We are currently working on both problems.

Just as a distributable net is defined as a net that is behaviourally equivalent to, or implementable by, a
distributed net, one could define anasynchronously implementablenet as one that is implementable by
an asynchronous net. This concept is again parametrised by the choice of an interaction pattern. It would
be an interesting quest to characterise the various classesof asynchronously implementable plain nets.

Also, extending our work to nets that are not required to be 1-safe will probably generate interesting
results, as conflict resolution protocols must keep track ofwhich token they are currently resolving the
conflict of.

In regard to practical applicability of our results, it would be very interesting to relate our Petri net based
terminology to hardware descriptions in chip design. Especially in modern multi-core architectures
performance reasons often prohibit using global clocks while a façade of synchrony must still be upheld
in the abstract view of the system.

On a higher level of applications, we expect our results to beuseful for language design. To start off, we
would like to make a thorough comparison of our results to those on communication patterns in process
algebras, versions of theπ-calculus and I/O-automata [12]. Using a Petri net semantics of a suitable
system description language, we could compare our net classes to the class of nets expressible in the
language, especially when restricting the allowed communication patterns in the various ways considered
in [4] or in [12]. Furthermore, we are interested in applyingour results to graphical formalisms for system
design like UML sequence diagrams or activity diagrams, also by applying their Petri net semantics. Our
results become relevant when such formalisms are used for the design of distributed systems. Certain
choice constructs become problematic then, as they rely on aglobal mechanism for consistent choice
resolution; this could be made explicit in our framework.

References

[1] W.M.P. van der Aalst, E. Kindler & J. Desel (1998):Beyond asymmetric choice: A note on some
extensions.Petri Net Newsletter55, pp. 3–13.

[2] E. Best (1987):Structure theory of Petri nets: The free choice hiatus.In W. Brauer, W. Reisig &
G. Rozenberg, editors:Advances in Petri Nets 1986, LNCS 254, Springer, pp. 168–206.

[3] E. Best & M.W. Shields (1983):Some equivalence results for free choice nets and simple nets and
on the periodicity of live free choice nets.In G. Ausiello & M. Protasi, editors: Proceedings 8th
Colloquium onTrees in Algebra and Programming (CAAP ’83), LNCS 159, Springer, pp. 141–154.

18 On Synchronous and Asynchronous Interaction in Distributed Systems

[4] F.S. de Boer & C. Palamidessi (1991):Embedding as a tool for language comparison: On the
CSP hierarchy.In J.C.M. Baeten & J.F. Groote, editors: Proceedings 2nd International Conference
on Concurrency Theory(CONCUR’91), Amsterdam, The Netherlands, LNCS 527, Springer, pp.
127–141.

[5] L. Bougé (1988):On the existence of symmetric algorithms to find leaders in networks of commu-
nicating sequential processes.Acta Informatica25(2), pp. 179–201.

[6] R.J. van Glabbeek, U. Goltz & J.-W. Schicke (2008):Symmetric and asymmetric asynchronous
interaction. Technical Report 2008-03, TU Braunschweig. Extended abstract in Proceedings 1st
Interaction and Concurrency Experience(ICE’08) onSynchronous and Asynchronous Interactions
in Concurrent Distributed Systems, to appear inElectronic Notes in Theoretical Computer Science,
Elsevier.

[7] R.J. van Glabbeek & W.P. Weijland (1996):Branching time and abstraction in bisimulation se-
mantics.Journal of the ACM43(3), pp. 555–600.

[8] D. Gorla (2006): On the relative expressive power of asynchronous communication primitives. In
L. Aceto & A. Ingólfsdóttir, editors:Proceedings 9th International Conference on Foundations of
Software Science and Computation Structures (FoSSaCS ’06), LNCS 3921, Springer, pp. 47–62.

[9] R.P. Hopkins (1991):Distributable nets.In Advances in Petri Nets 1991, LNCS 524, Springer, pp.
161–187.

[10] L. Lamport (1978):Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM21(7), pp. 558–565.

[11] L. Lamport (2003):Arbitration-free synchronization.Distributed Computing16(2-3), pp. 219–237.

[12] N. Lynch (1996):Distributed Algorithms. Morgan Kaufmann Publishers.

[13] U. Nestmann (2000):What is a ‘good’ encoding of guarded choice?Information and Computation
156, pp. 287–319.

[14] E.-R. Olderog & C.A.R. Hoare (1986):Specification-oriented semantics for communicating pro-
cesses.Acta Informatica23, pp. 9–66.

[15] C. Palamidessi (1997):Comparing the expressive power of the synchronous and the asynchronous
pi-calculus.In Conference Record of the 24th ACM SIGPLAN-SIGACT Symposium onPrinciples
of Programming Languages (POPL ’97), ACM Press, pp. 256–265.

[16] W. Reisig (1982):Deterministic buffer synchronization of sequential processes.Acta Informatica
18, pp. 115–134.

[17] Peter Selinger (1997):First-order axioms for asynchrony.In Proceedings 8th International Confer-
ence onConcurrency Theory(CONCUR’97), Warsaw, Poland,LNCS1243, Springer, pp. 376–390.

[18] Dirk Taubner (1988):Zur verteilten Implementierung von Petrinetzen.Informationstechnik30(5),
pp. 357–370. Technical report, TUM-I 8805, TU München.

van Glabbeek, Goltz and Schicke 19

A The Asynchronous Implementation

Given a netN and a distributionD on N , this appendix explores the properties of theD-based asyn-
chronous implementationID(N) of N , focussing on the relationship betweenID(N) andN , and cul-
minating in the proofs of Proposition 1 and Theorem 1 of Section 3.

For better readability we will use the abbreviations◦x := {y | (y, x) ∈ F ′} andx◦ := {y | (x, y) ∈ F ′}
instead of•x or x• when making assertions about the flow relation of an implementation.

The following lemma shows how theD-based asynchronous implementation of a netN simulates the
behaviour ofN .

Lemma 3 Let N = (S, T, F,M0, ℓ) be a net,A ⊆ Act, σ ∈ Act∗ andM1,M2 ⊆ S.

1. If M1
A

−→N M2 thenM1
τ

−→
∗

ID(N)
A

−→ID(N) M2.

2. If M1
σ

=⇒N M2 thenM1
σ

=⇒ID(N) M2.

Proof AssumeM1 [G〉N M2. Then, by construction ofID(N),

M1 [{ts | t ∈ G, s ∈ •t, s 6≡D t}〉ID(N) [{t | t ∈ G}〉ID(N) M2.

The first part of that execution can be split into a sequence ofsingleton transitions, all labelledτ .
The second statement follows by a straightforward induction on the length ofσ. �

This lemma uses the fact that any marking ofN is also a marking onID(N). The reverse does not
hold, so in order to describe the degree to which the behaviour of ID(N) is simulated byN we need to
explicitly relate markings ofID(N) to those ofN . This is in fact not so hard, as any reachable marking of
ID(N) can be obtained from a reachable marking ofN by moving some tokens into the newly introduced
buffering placesst. To establish this formally, we define a function which transforms implementation
markings into the related original markings, by shifting these tokens back.

Definition 17 Let N = (S, T, F,M0, ℓ) be a net and letID(N) = (S ∪ Sτ , T ∪ T τ , F ′,M0, ℓ
′).

τ← : S ∪ Sτ → S is the function defined by

τ←(p) :=

{

s iff p = st with st ∈ Sτ, s ∈ S, t ∈ T

p otherwise(p ∈ S)

Where necessary we extend functions to sets elementwise. Sofor anyM ⊆ S ∪ Sτ we haveτ←(M) =
{τ←(s) | s ∈ M} = (M ∩ S) ∪ {s | st ∈ M}. In particular,τ←(M) = M whenM ⊆ S.

We now introduce a predicateα on the markings ofID(N) that holds for a marking iff it can be obtained
from a reachable marking ofN (which is also a marking ofID(N)) by firing some unobservable tran-
sitions. Each of these unobservable transitions moves a token from a places into a buffering placest.
Later, we will show thatα exactly characterises the reachable markings ofID(N). Furthermore, as every
token can be moved only once, we can also give an upper bound onhow many such movements can still
take place.

20 On Synchronous and Asynchronous Interaction in Distributed Systems

Definition 18 Let N = (S, T, F,M0, ℓ) be a net andID(N) = (S ∪ Sτ , T ∪ T τ , F ′,M0, ℓ
′).

The predicateα ⊆ P(S ∪ Sτ) is given by

α(M) :⇔ τ←(M) ∈ [M0〉N ∧ ∀p, q ∈ M. τ←(p) = τ←(q) ⇒ p = q.

The functiond : P(S ∪Sτ) → IN ∪ {∞} is given byd(M) := |M ∩ {s | s ∈ S, ∃t∈ s•. s 6≡D t}|,
where we choose not to distinguish between different degrees of infinity.

Note thatα(M) implies |M | = |τ←(M)|, and reachable markings ofN are always finite (thanks to our
definition of a net). Henceα(M) impliesd(M) ∈ IN. The following lemma confirms that our informal
description ofα matches its formal definition.

Lemma 4 Let N andID(N) be as above andM ⊆ S ∪ Sτ , with M finite.

Then∀p, q ∈ M. τ←(p) = τ←(q) ⇒ p = q iff τ←(M)
τ

−→
∗

ID(N) M .

Proof Given thatτ←(M) ⊆ S, “if” follows directly from the construction ofID(N).
For “only if”, assume∀p, q ∈ M. τ←(p) = τ←(q) ⇒ p = q. Thenτ←(M) [{ts | st ∈ M}〉ID(N) M . �

Now we can describe how any net simulates the behaviour of itsfully asynchronous implementation.

Lemma 5 Let N andID(N) be as above,A ⊆ Act, σ ∈ Act∗ andM,M ′ ⊆ S ∪ Sτ .

1. α(M0).

2. If α(M) ∧ M
A

−→ID(N) M ′ thenτ←(M)
A

−→N τ←(M ′) ∧ α(M ′).

3. If α(M) ∧ M
τ

−→ID(N) M ′ thend(M) > d(M ′) ∧ τ←(M) = τ←(M ′) ∧ α(M ′).

4. If M0
σ

=⇒ID(N) M ′ thenM0
σ

=⇒N τ←(M ′) ∧ α(M ′).

Proof “1”: M0 ∈ [M0〉N and∀s ∈ M0 ⊆ S. τ←(s) = s.

“2”: Supposeα(M) andM [G〉ID(N) M ′ with G ⊆ T . Soτ←(M) is a reachable marking ofN .

Note that for anyt ∈ T we have thatτ←(◦t) = •t. Moreover,α(M) implies that

X,Y ⊆ M ∧ X ∩ Y = ∅ ⇒ τ←(X) ∩ τ←(Y) = ∅ (1)
and hence

Y ⊆ M ⇒ τ←(M \ Y) = τ←(M) \ τ←(Y) . (2)

Let t ∈ G. Sincet is enabled inM , we have◦t ⊆ M and hence•t = τ←(◦t) ⊆ τ←(M). Given thatN
is contact-free andτ←(M) ∈ [M0〉N , it follows thatt is enabled inτ←(M).

Now let t, u ∈ G with t 6= u. Then◦t ∪ ◦u ⊆ M and◦t ∩ ◦u = ∅, so•t ∩ •u = τ←(◦t) ∩ τ←(◦u) = ∅,
using (1). Given that•t∪ •u ⊆ τ←(M) andN is contact-free, it follows that alsot• ∩u• = ∅ and hence
t andu are independent.

SinceM ′ = (M \ ◦G)∪G◦ we haveτ←(M ′) = (τ←(M)\τ←(◦G))∪ τ←(G◦) = (τ←(M)\ •G)∪G•

and henceτ←(M) [G〉N τ←(M ′).

Next we establishα(M ′). To this end, we may assume thatG is a singleton set, forG must be finite—this
follows since all (independent) transitions inG are enabled from the reachable markingτ←(M) of N ,
andN satisfies the finiteness restrictions imposed on nets in Section 2—and whenM [{t0, t1, . . . , tn}〉M

′

for somen ≥ 0 then there areM1,M2, . . . ,Mn with M [{t0}〉M1[{t1}〉M2 · · ·Mn [{tn}〉M ′, allowing
us to obtain the general case by induction. So letG = {t} with t ∈ T .

van Glabbeek, Goltz and Schicke 21

Above we have shown thatτ←(M ′) ∈ [M0〉N . We still need to prove thatτ←(p) = τ←(q) ⇒ p = q
for all p, q ∈ M ′. Assume the contrary, i.e. there arep, q ∈ M ′ with τ←(p) = τ←(q) but p 6= q. Since
α(M), at least one ofp andq—sayp—must not be present inM . Thusp ∈ t◦ = t• ⊆ S. As τ←(q) =
τ←(p) = p andq 6= p, it must be thatq ∈ Sτ . Henceq /∈ t◦, soq ∈ M , andp = τ←(q) ∈ τ←(M). As
shown above,t is enabled inτ←(M). By the contact-freeness ofN , (τ←(M) \ •t) ∩ t• = ∅, sop ∈ •t.
Using thatp 6∈M , we find thatp 6∈ ◦t ⊆ M , sop 6≡D t andpt ∈

◦t ⊆ M . As by construction◦t∩ t◦ = ∅,
we havept 6∈ M ′, soq 6= pt. Yet τ←(q) = p = τ←(pt), contradictingα(M).

“3”: Let ts ∈ T τ such thatM [{ts}〉ID(N) M ′. Then, by construction ofID(N), ◦ts = {s}∧ ts
◦ = {st}.

HenceM ′ = M \{s}∪{st} andd(M ′) = d(M)−1∧τ←(M ′) = τ←(M). Moreover,α(M ′) ⇔ α(M).

“4”: Using 1–3, this follows by a straightforward inductionon the number of transitions in the derivation
M0

σ
=⇒ID(N) M ′. �

It follows thatα exactly characterises the reachable markings ofID(N):

Lemma 6 Let N andID(N) be as before andM ⊆ S ∪ Sτ .
ThenM ∈ [M0〉ID(N) iff α(M).

Proof “Only if” follows from Lemma 5.4, and “if” follows by Lemmas 3and 4. �

Using this we now prove Proposition 1 from Section 3:

Proposition 1 For any (contact-free) netN = (S, T, F,M0, ℓ), and any choice of≡D, the netID(N) is
contact-free, and satisfies the other requirements imposedon nets, listed in Section 2.

Proof Let M ∈ [M0〉ID(N). Thenα(M), and henceτ←(M) ∈ [M0〉N .

Consider anyt ∈ T with ◦t ⊆ M . Assume(M \ ◦t) ∩ t◦ 6= ∅. Sincet◦ = t• ⊆ S let p ∈ S be such that
p ∈ M ∩ t◦ andp 6∈ ◦t. As N is contact-free we have(τ←(M) \ •t)∩ t• = ∅, so sincep ∈ τ←(M)∩ t•

it must be thatp∈ •t. Hencept ∈
◦t ⊆ M and we havep 6= pt yetτ←(p)= p= τ←(pt), violatingα(M).

Now consider anytp ∈ T τ with ◦tp ⊆ M . As ◦tp = {p} andtp
◦ = {pt} we have that(M \◦tp)∩tp

◦ 6= ∅
only if p ∈ M ∧ pt ∈ M . However,τ←(p) = p = τ←(pt) which would violateα(M).

This established the contact-freeness ofID(N). By construction,M0 is finite, ◦t 6= ∅ and◦t andt◦ are
finite for all t ∈ T ∪ T τ , ands◦ is finite for all s ∈ S ∪ Sτ . �

The following lemma is a crucial step in the proof of Theorem 1.

Lemma 7 Let N = (S, T, F,M0, ℓ) be a net without a distributed conflict w.r.t. a distributionD.
Let M1 ∈ [M0〉N andM1

τ
−→ID(N) M2

τ
−→ID(N) · · ·

τ
−→ID(N) Mn X

τ
−→ID(N) for somen ≥ 1.

Then,M1
A

−→N iff Mn
A

−→ID(N) for all A ⊆ Act.

Proof Suppose•t ⊆ M1 but ◦t 6⊆ Mn for somet ∈ T . Forp ∈ •t write p̂t := pt if p 6≡D t andp̂t = p
otherwise. Then◦t = {p̂t | p ∈ •t}. Pick p ∈ •t such that̂pt 6∈ Mn. As Mn X

τ
−→ID(N) we also have

p 6∈ Mn. Let 1 ≤ i < n be the last index such thatp ∈ Mi or p̂t ∈ Mi. ThenMi [{up}〉ID(N) Mi+1 for
someu ∈ T with u 6= t, p ∈ •u andp 6≡D u. But this would constitute a distributed conflict w.r.t.D.

It follows that M1 [t〉N implies Mn [t〉ID(N) for all t ∈ T . Moreover, it follows immediately from the
construction ofID(N) that if two transitionst, u∈T are independent inN , then they are also independent
in ID(N). HenceM1 [G〉N impliesMn [G〉ID(N) for all G ⊆ T . ThusM1

A
−→N impliesMn

A
−→ID(N).

For the reverse direction, observe thatα(M1) andτ←(M1) = M1 becauseM1 ∈ [M0〉N . Henceα(Mn)
andτ←(Mn) = M1 by Lemma 5.3 andMn

A
−→ID(N) impliesM1

A
−→N for all A by Lemma 5.2. �

22 On Synchronous and Asynchronous Interaction in Distributed Systems

Theorem 1 Let N = (S, T, F,M0, ℓ) be a plain net, andQ a requirement on distributions of nets.
ThenN is behaviourallyQ-asynchronous iff it is structurallyQ-asynchronous.

Proof “Only if”: SupposeN fails to be structurallyQ-asynchronous. LetD be a distribution onN
meeting the requirementQ. ThenN has a distributed conflict with respect toD, i.e.

∃t, u ∈ T ∃p ∈ •t ∩ •u. t 6= u ∧ p 6≡D u ∧ ∃M ∈ [M0〉N . •t ⊆ M .

We need to show thatID(N) 6≈R N .

Let M ∈ [M0〉N be such that•t ⊆ M and letσ ∈ Act∗ be such thatM0
σ

=⇒N M . ThenN has a step
ready pair<σ,X> with {ℓ(t)} ∈ X. As plain nets are deterministic,M is the only marking ofN with
the property thatM0

σ
=⇒N M . HenceN has exactly once step ready pair of the form<σ,X>, and it

satisfies{ℓ(t)} ∈ X.

Lemma 3 yieldsM0
σ

=⇒ID(N) M . LetM1 := (M \{p})∪{pu}. ThenM [up〉ID(N) M1 by Definition 6,
soM

τ
−→ M1. By Lemma 5.3, we haveM1

τ
−→ID(N) M2

τ
−→ID(N) · · ·

τ
−→ID(N) Mn X

τ
−→ID(N) for

somen ≤ d(M)∈ IN. As v◦ ⊆ Sτ for all v ∈ T τ , we havep 6∈Mi for i = 1, 2, . . . , n. Moreover, in case
p 6≡ t we havept ∈ v◦ only if p ∈ ◦v; hence alsopt 6∈ Mi for i = 1, 2, . . . , n. It follows that◦t 6⊆ Mn.
ThusID(N) has a step ready pair<σ,X> with {ℓ(t)} 6∈ X. We find thatR(ID(N)) 6= R(N).

“If”: SupposeN is structurallyQ-asynchronous, i.e. there is a distributionD onN meeting the require-
mentQ, such thatN has no distributed conflicts with respect toD. We show thatR(ID(N)) = R(N).

‘’ ⊇”: Let <σ,X> ∈ R(N). Then there is a markingM of N such thatM0
σ

=⇒N M , M
A

−→N for
all A ∈ X andM X

A
−→N for all A 6∈ X. Lemma 3 yieldsM0

σ
=⇒ID(N) M . By Lemma 5.3, we have

M
τ

−→ID(N) M1
τ

−→ID(N) M2
τ

−→ID(N) · · ·
τ

−→ID(N) Mn X
τ

−→ID(N) for some0 ≤ n ≤ d(M) ∈ IN.
Now Lemma 7 yields<σ,X> ∈ R(ID(N)).

“⊆”: Let <σ,X> ∈ R(ID(N)). Then there is a markingM of ID(N) such thatM0
σ

=⇒ID(N) M ,
M X

τ
−→ID(N), andM

A
−→ID(N) iff A∈X. Lemma 5.4 yieldsM0

σ
=⇒N τ←(M) ∧ α(M) and Lemma 4

givesτ←(M)
τ

−→
∗

ID(N) M . Now Lemma 7 yields<σ,X> ∈ R(N). �

B The Transition-Controlled-Choice Implementation

In this appendix we show that the transition-controlled-choice implementation of any netN is step
readiness equivalent toN . To this end we use the following result.

Lemma 8 Let N = (S, T, F,M0, ℓ) andN ′ = (S′, T ′, F ′,M ′
0, ℓ
′) be two nets, andℓ′(t) 6= τ for t ∈ T ′.

Suppose there is a functionτ⇐ : P(S) → P(S′) from the markings ofN to the markings ofN ′,
adistancefunctiond : P(S) → IN ∪ {∞} and a predicateβ ⊆ P(S) such that

β(M0) ∧ τ⇐(M0) = M ′
0 (1)

β(M1) ∧ M1
τ

−→N M2 ⇒ β(M2) ∧ τ⇐(M2) = τ⇐(M1) ∧ d(M1) > d(M2) (2)

β(M1) ∧ M1
A

−→N M2 ⇒ β(M2) ∧ τ⇐(M1)
A

−→N ′ τ⇐(M2) (3)

β(M1) ∧ d(M1) > 0 ⇒ M1
τ

−→N (4)

β(M1) ∧ d(M1) = 0 ∧ τ⇐(M1)
A

−→N ′ M ′
2 ⇒ ∃M2. M1

A
−→N M2 ∧ M ′

2 = τ⇐(M2) . (5)

ThenN ≈R N ′.

van Glabbeek, Goltz and Schicke 23

Proof “R(N) ⊆ R(N ′)”: Conditions (1–5) allow any step ready pair<σ,X> of N to be mimicked
step for step byN ′. To be precise, if<σ,X> ∈ R(N), then there is a markingM1 with M0

σ
=⇒N M1,

M1 X
τ

−→N , M1
A

−→N for anyA ∈ X andM1 X
A

−→N for anyA 6∈ X. As for all reachable markingsM1

of N , we haveβ(M1). Now (1–3) implyM ′
0

σ
=⇒N ′ τ⇐(M1). Furthermore, (3) impliesτ⇐(M1)

A
−→N ′

for anyA ∈ X, (4) impliesd(M1) = 0, and hence (5) impliesτ⇐(M1) X
A

−→N ′ for anyA 6∈ X.

“R(N ′) ⊆ R(N)”: From conditions (2–5) we infer:

β(M1) ⇒ ∃M2. M1
τ

−→
∗

N M2 ∧ M2 X
τ

−→ ∧ β(M2) ∧ τ⇐(M2) = τ⇐(M1) (6)

β(M1) ∧ τ⇐(M1)
A

−→N ′ M ′
2 ⇒ ∃M2. M1

τ
−→

∗

N
A

−→N M2 ∧ β(M2) ∧ M ′
2 = τ⇐(M2) (7)

The first statement follows by repeated application of (2); the second by repeated application of (4) and
(2), then (5) and (3). Conditions (1) and (7) imply that everyreachable marking ofN ′ is of the form
τ⇐(M) with M a reachable marking ofN . Moreover, (1), (6) and (7) yield, forσ ∈ Act∗,

M ′
0

σ
=⇒N ′ M ′ ⇒ ∃M. M0

σ
=⇒N M ∧ M X

τ
−→ ∧ β(M) ∧ M ′ = τ⇐(M) .

In combination with (3–5) this implies that any ready pair<σ,X> of N ′ is also a ready pair ofN . �

In fact, conditions (1–5) are strong enough to show thatN andN ′ are semantically equivalence in various
other ways as well; in particularτ⇐ constitutes abranching bisimulationbetweenN andN ′, as defined
in [7]. In order to apply Lemma 8, we will takeN to be the transition-controlled-choice implementation
of a given netN ′ that features no transitions labelledτ .

Definition 19
Let N ′ = (S, T, F ′,M0, ℓ

′) be a net withℓ′(t) 6= τ for t ∈ T ′, andN = (S ∪ Sτ , T ∪ T τ , F,M0, ℓ)
its transition-based-choice implementation.

The functionτ⇐ : P(S ∪ Sτ) → P(S) is defined by

τ⇐(M) := (M ∩ S) ∪ {s | s ∈ S, {s[t] | t ∈ s•} ⊆ M} ∪ {s | s ∈ t• ∧ t ∈ M} .

The functionτ⇐= : P(S ∪ Sτ) → P(S) is defined by

τ⇐=(M) := (M ∩ S) ∪ {s | s ∈ S, {s[t] | t ∈ s•} ∩ M 6= ∅} ∪ {s | s ∈ •t ∧ t ∈ M} .

The functiond : P(S ∪ Sτ) → IN ∪ {∞} is defined by

d(M) := |M ∩ S| +
∑

t ∈M

(1 + |t•|) +
∑

s
[u]
t
∈M

1 .

The predicateβ ⊆ P(S ∪ Sτ) is defined by

β(M) :⇔ τ⇐=(M) ∈ [M0〉N ′ ∧ (β1)
(

s[t] ∈ M ⇒ s /∈ M
)

∧ (β2)
(

s[u] ∈ M ∧ s[t] /∈ M ⇒ ∃v ∈ s•. s[u]
v ∈ M

)

∧ (β3)
(

t , u ∈ M ∧ t 6= u ⇒ •t ∩ •u = ∅
)

∧ (β4)
(

s
[u]
t ∈ M ⇒ s

[u]
t /∈ M ∧ s[u], t ∈ M

)

∧ (β5)
(

s
[u]
t ∈ M ⇒ t ∈ M

)

∧ (β6)
(

t ∈ M ⇒ ∀s ∈ •t, u ∈ s•. s, s[t] /∈ M ∧
(

[u] 6= [t] ⇒ s
[u]
t ∈ M ∨ s

[u]
t ∈ M

))

. (β7)

24 On Synchronous and Asynchronous Interaction in Distributed Systems

Some conjuncts in the definition ofβ(M) are universally quantified over (some of)s, t andu; we write
− βi

s,t,u(M) to say that markingM satisfies the instance ofβi for the specific valuess, t andu,
− βi

s(M) for ∀t, u ∈ s•. βi
s,t,u(M),

− andβi(M) for ∀s ∈ S. βs
i (M),

so thatβ(M) iff β1(M) ∧ β2(M) ∧ β3(M) ∧ β4(M) ∧ β5(M) ∧ β6(M) ∧ β7(M).

Lemma 9 Let N ′, N , τ⇐, τ⇐=, d, andβ be as in Definition 19.
ThenN is a net as defined in Section 2 and the clauses (1)–(5) of Lemma8 hold.

Proof Again, we use◦x andx◦ instead of•x andx• when making assertions about the flow relation
of N (the implementation). Given that•t 6= ∅ and•t andt• are finite for allt ∈ T ands• is finite for
all s ∈ S, by construction we have◦t 6= ∅ and◦t andt◦ are finite for allt ∈ T ∪ T τ ands◦ is finite for
all s ∈ S ∪ Sτ . As N has the same initial marking asN ′, it must be finite. In order to show thatN is
contact-free, we must show that for each reachable markingM ∈ [M0〉N the following four properties
are satisfied:

(i) If s ∈ M thens[t] /∈ M for all t ∈ s•.

(ii) If s
[u]
t , s[u] ∈ M thens

[u]
t /∈ M .

(iii) If s[t] ∈ M for all s ∈ •t then t /∈ M ands
[u]
t /∈ M for all s ∈ •t andu ∈ s• with [u] 6= [t].

(iv) If t ∈ M ands
[u]
t ∈ M for all s ∈ •t andu ∈ s• with [u] 6= [t], thenM ∩ t• = ∅.

We proceed to show that all four properties are implied byβ(M). This entails that the contact-freeness
of N will follow immediately from the validity of clauses (1)–(3) of Lemma 8.

Property (i) follows immediately fromβ2(M) and (ii) fromβ5(M). The claim t /∈ M of property (iii)
follows fromβ7(M), and using this the claims[u]

t /∈ M from β5(M). For (iv), assume, towards a contra-
diction, that t ∈ M , yets ∈ M ∩ t•. Then•t ⊆ τ⇐=(M). Now β1(M) and the contact-freeness ofN ′

gives(τ⇐=(M) \ •t) ∩ t• = ∅. As s ∈ M ∩ t• ⊆ τ⇐=(M) ∩ t• we obtains ∈ •t, contradictingβ7(M).

It remains to show the validity of clauses (1)–(5). Clause (1) follows directly from the definitions.

Clause(2): Assumeβ(M1). As remarked in Section 2, reachable markings ofN ′ are finite, so byβ1(M1)
M1∩S is finite andM1 contains only finitely many places of the formt (usingβ4(M1) and that•t 6= ∅
for t∈T). Since for a givent, using that•t ands• are finite, there are only finitely many placess

[u]
t in N ,

it follows by β5(M1) thatM1 contains only finite many places of the forms[u]
t . From this we conclude

thatd(M1) is finite. We proceed by a case distinction over all transitions labelledτ .

AssumeM1 [s 〉N M2. ThenM2 = (M1 \ {s}) ∪ {s[t] | t ∈ s•} andτ⇐(M2) = τ⇐(M1) as well as
τ⇐=(M2) = τ⇐=(M1). Moreover,d(M2) = d(M1) − 1 ass ∈ M1 ∩ S but s /∈ M2 and thes[t] don’t
contribute tod. It remains to check thatβ(M2). We will do that for each of the six conjuncts separately.
The validity ofβ1 is clearly preserved, in the sense thatβ1(M1) implies β1(M2). The same holds for
β4 andβ6, as places of the formt ands

[u]
t do not figure as pre- or postplaces of the transitions .

Requirementβ2
s(M2) simply holds, ass /∈ M2, whereas fors′ 6= s requirementβ2

s′(M2) is preserved.
In the same way we obtainβ3(M2), β5(M2) andβ7(M2).

AssumeM1 [t
[u]
s 〉N M2. ThenM2 = (M1 \ {s

[u]
t , s[u]}) ∪ {s

[u]
t }. Froms

[u]
t ∈ M1 we obtain t ∈ M1

by β5
s,t,u(M1) ands[t] /∈ M1 by β7(M1). Hence the removal of anys[u] does not affectτ⇐, and we

haveτ⇐(M2) = τ⇐(M1). As the only change in summands contributing tod is the removal ofs[u]
t ,

we haved(M2) = d(M1) − 1. Since t ∈ M1, the removal ofs[u] does not affectτ⇐= either, and we
haveτ⇐=(M2) = τ⇐=(M1). Henceβ1 is preserved. Requirementβ2

s,u(M2) holds (sinces[u] /∈ M2)

van Glabbeek, Goltz and Schicke 25

andβ2
s′,t′ for s′ 6= s or t′ 6= u is preserved. Likewise,β3

s,t′,u(M2) holds (sinces[u] /∈ M2) andβ3
s′,t′,u′

with s′ 6= s or u′ 6= u is preserved. Requirementβ5
s,t,u(M2) holds (becauses[u]

t /∈ M2), andβ5
s′,t′,u′

with s′ 6= s or u′ 6= u is preserved. As forβ5
s,t′,u with t′ 6= t, by β4(M1) we have t′ /∈ M1 and hence

by β5
s,t′,u(M1) it must be thats[u]

t′ /∈ M1, and thuss[u]
t′ /∈ M2. This yieldsβ5

s,t′,u(M2). Since t ∈ M1

we have t ∈ M2 and henceβ6
s,t,u(M2) holds. All other instances ofβ6 are preserved. Requirements

β4 andβ7 are preserved as well.

AssumeM1 [t′〉N M2. ThenM2 = (M1 \ { t , s
[u]
t | s ∈ •t, u ∈ s•, [u] 6= [t]}) ∪ {s | s ∈ t•} and

τ⇐(M2) = τ⇐(M1). Againd(M2) = d(M1) − 1 as the singlet contributed1 + |t•| whereas all the
newly produced placess together contribute|t•|. As t ∈ M1 we have•t ∈ τ⇐=(M1). Moreover, for
s ∈ •t andu, v ∈ s•, [u] 6= [t], v 6= t we have t , s

[u]
t ∈ M1, sos, s[t], v /∈ M1 by β7(M1) andβ4(M1)

ands
[u]
t , s

[u]
v , s[u] /∈ M1 by β5(M1) andβ3(M1). Hence t is the only place inM1 that contributess∈ •t

to τ⇐=(M1). Thereforeτ⇐=(M2) = (τ⇐=(M1)\
•t)∪ t•. Henceτ⇐=(M1) [{t}〉N ′ τ⇐=(M2), soβ1 is

preserved. Requirementsβ3, β4, β5 andβ6 are easily seen to be preserved as well. SinceN ′ is contact-
free, we have(τ⇐=(M1) \

•t) ∩ t• = ∅, usingβ1(M1). So fors ∈ t• we have eithers /∈ τ⇐=(M1) or
s∈ •t. Either possibility impliess[u] /∈M1 for u∈s•, and v /∈M1 for v∈s•, v 6= t. Hences[u], u /∈M2

for u ∈ s•. Using this, alsoβ2 andβ7 turn out to be preserved.

Clause(3): Assumeβ(M1) ∧ M1 [G〉N M2 with ℓ(t) 6= τ for all t ∈ G. Then

M2 = (M1 \
◦G) ∪ G◦ = M1 \ {s

[t] | s ∈ •G} ∪ { t , s
[u]
t | t ∈ G, s ∈ •t, u ∈ s•, [u] 6= [t]}.

For all t ∈ G ands ∈ •t we haves[t] ∈ M1 and hences ∈ τ⇐=(M1). Thusτ⇐=(M1)[t〉N ′ .

Claim 1: Let t ∈ G, s ∈ •t andu, v ∈ s•. Then v /∈ M1 ands[u] ∈ M1.

Proof: Assume, towards a contradiction, thatv ∈ M1. Then•v ⊆ τ⇐=(M1) and thusτ⇐=(M1)[v〉N ′ .
As s ∈ •t∩ •v we have¬τ⇐=(M1)[t, v〉N ′ , soβ1(M1) and Definition 15 yieldt#v, and hence[t] = [v].
Nevertheless,β7(M1) givess[v] /∈ M1, whereass[t] ∈ M1.

Next assume thats[u] /∈M1. Thenβ3
s,u,t(M1) yields∃v∈s•. s

[t]
v ∈M1, andβ5

s,v,t(M1) gives v ∈M1.

Claim 2: Let t1, t2 ∈ G with t1 6= t2. Then•t1 ∩ •t1 = ∅.

Proof: Assume, towards a contradiction, thats ∈ •t1 ∩
•t2. Thenτ⇐=(M1)[t1〉N ′ andτ⇐=(M1)[t2〉N ′ ,

but ¬τ⇐=(M1)[t1, t2〉N ′ , so β1(M1) and Definition 15 yieldt1#t2, and hence[t1] = [t2]. But this
impliess[t1] = s[t2] ∈ ◦t1 ∩

◦t2, contradictingM1 [G〉N .

Claim 3: Let t ∈ G, s ∈ •t andv ∈ •s. Thens, v /∈ M1.

Proof: Sinces[t]∈M1 we haves /∈M1 byβ2(M1). Assume, towards a contradiction, thatv ∈ M1. Then
•v ⊆ τ⇐=(M1) ∈ [M0〉N ′ , usingβ1(M1). AsN ′ is contact-free, we have(τ⇐=(M1) \

•v)∩ v• = ∅. So
sinces ∈ τ⇐=(M1) ∩ v• it must be thats ∈ •v. But then v /∈ M1 by Claim 1.

Claim 1 implies that•G ⊆ τ⇐(M1), and Claim 2 yieldsτ⇐(M1) [G〉N ′ M ′
2 for someM ′

2. By Claim 3
we haveτ⇐(M1 \

◦G) = τ⇐(M1) \
•G and thus

τ⇐(M2) = τ⇐((M1 \
◦G) ∪ G◦) = (τ⇐(M1) \

•G) ∪ G• = M ′
2.

It remains to check thatβ(M2). First of all,τ⇐=(M2) = τ⇐=(M1) and henceβ1 is preserved. It is easy
to see thatβ2, β6 andβ7 are preserved. Requirementβ3

s for s /∈ •G is also preserved, whereasβ3
s(M2)

for s ∈ •t, t ∈ G holds withv := t. Requirementβ4 may fail to be preserved only if∃t1, t2 ∈ G with
t1 6= t2 and•t1 ∩ •t2 6= ∅ or if ∃t ∈ G and v ∈ M1 with •t ∩ •v 6= ∅. These cases are ruled out by
Claims 2 and 1. Requirementβ5

s with s /∈ •G is preserved. Since there is nov ∈ M1 with •G∩ •v 6= ∅,

26 On Synchronous and Asynchronous Interaction in Distributed Systems

by β5(M1) andβ6(M1) there are nos[u]
v , s

[u]
v ∈ M1 with s ∈ •G. Moreover, for allt ∈ G, s ∈ •t and

u ∈ s• with [u] 6= [t] we haves[u] ∈ M1 and hences[u] ∈ M2. Thus we obtainβ5
s(M2) for s ∈ •G.

Clause(4): By a case distinction on the three summands ofd(M1).

Assume∃s ∈ M1 ∩ S. ThenM1[s 〉N ′ .

Assume∃s
[u]
t ∈ M1. Then byβ5(M1) alsos[u] ∈ M1 and henceM1[t

[u]
s 〉N ′ .

Assume∃ t ∈ M1 but ¬∃s
[u]
t ∈ M1. Then byβ7(M1) also∃s

[u]
t ∈ M1 for all s ∈ •t andu ∈ s• with

[u] 6= [t]. ThusM1[t
′〉N ′ .

Clause(5): d(M1) = 0 impliesM1 ∩ S = ∅ andM1 does not contain places of the formt or s
[u]
t . By

β6(M1) it doesn’t contain places of the forms[u]
t either. Hence all places inM1 have the forms[t] for

s ∈ S andt ∈ s•. Moreover, byβ3(M1), for anys ∈ S eitherM1 contains all placess[t] with t ∈ s• or
none. ThusM1 = {s[t] | s ∈ τ⇐(M1), t ∈ s•}. Using this, whenτ⇐(M1) [G〉N ′ M ′

2 for G ⊆ T , there
is a uniqueM2 such thatM1 [G〉N M2. It remains to show thatτ⇐(M2) = M ′

2.

First of all, note thatM2 ∩ S = ∅. Secondly, we have

{s | s ∈ S, {s[t] | t ∈ s•} ⊆ M2} = {s | s ∈ τ⇐(M1), s 6∈ •G} = τ⇐(M1) \
•G.

Finally, {s | s ∈ t• ∧ t ∈ M2} = {s | s ∈ t• ∧ t ∈ G} = G•.

Thus, applying Definitions 19 and 2,τ⇐(M2) = (τ⇐(M1) \
•G) ∪ G• = M ′

2. �

Definition 20 ForN a net andi and action, letN/i be the net obtained by renaming all occurrences of
i into τ .

Proposition 2 If N ≈R N ′ thenN/i ≈R N ′/i.

Proof <σ,X> is a step ready pair ofN/i iff N has a step ready pair<ρ,X>, where the sequenceσ
can be obtained fromρ by deleting alli’s, and{i} /∈ X. �

Theorem 2 Any net is step readiness equivalent to its transition-controlled-choice implementation.

Proof Let N ′τ = (S, T, F ′,M0, ℓ
′
τ) be a net andNτ = (S ∪ Sτ , T ∪ T τ , F,M0, ℓτ) its transition-

controlled-choice implementation. ObtainN ′ from N ′τ and N from Nτ by changing allτ -labels of
transitions inT—but not those inT τ—into i. ThusN = (S ∪ Sτ , T ∪ T τ , F,M0, ℓ) whereℓ satisfies
ℓ(t) = τ if t ∈ T τ ; ℓ(t) = i if t ∈ T and ℓτ (t) = τ ; and ℓ(t) = ℓτ (t) otherwise. ThenN is still
the transition-controlled-choice implementation ofN ′, and moreoverN ′ has noτ -labels. Furthermore,
N ′/i = N ′τ and N/i = Nτ . Lemmas 8 and 9 yieldN ≈R N ′. So by Proposition 2 we obtain
N/i ≈R N ′/i, which isNτ ≈R N ′τ . �

